

Welcome to lyricsfandom’s documentation!

Getting Started

	Getting Started

Examples

	Examples

Package

	lyricsfandom

	lyricsfandom.music

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

Installation

Install lyricsfandom package from PyPi:

pip install lyricsfandom

Or from GitHub:

git clone https://github.com/arthurdjn/scrape-lyricwiki

Usage

You can use the simplified API to look for lyrics and music.

Example:

from lyricsfandom import LyricWiki

Connect to the API
wiki = LyricWiki()
Search for an artist. `LyricsFandom` is not case sensitive.
artist = wiki.search_artist('london grammar')
artist

Output:

Artist: London Grammar

Then, you can search for albums too.

Example:

Search for an album
album = wiki.search_album('london grammar', 'if you wait')
album

Output:

London Grammar: Album "If You Wait" (2013), Songs: 17

Finally, you can scrape for songs.

Example:

Search for an album
song = wiki.search_song('london grammar', 'strong')
song

Output:

London Grammar: "Strong" from Album "If You Wait" (2013)

…and scrape lyrics.

Example:

Search for an album
lyrics = song.get_lyrics()
print(lyrics)

Output:

Excuse me for a while
While I'm wide eyed
And I'm so damn caught in the middle
I've excused you for a while
While I'm wide eyed
And I'm so down caught in the middle

And a lion, a lion roars
Would you not listen?
If a child, a child cries
Would you not forgive them?

[...]

Examples

The requests should be made from the API. Then, you can have access to albums, songs, lyrics.

LyricsFandom API

from lyricsfandom import LyricWiki

Connect to the API
wiki = LyricWiki()
Search for an artist. `LyricsFandom` is not case sensitive.
artist = wiki.search_artist('london grammar')
album = wiki.search_album('london grammar', 'if you wait')
song = wiki.search_song('london grammar', 'strong')
lyrics = song.get_lyrics()

You can have access to their attributes with:

From an Artist
artist_name = artist.artist_name

From an Album
artist_name = album.artist_name
album_name = album.album_name
album_typz = album.album_typz
album_year = album.album_year

From a Song
artist_name = song.artist_name
artist_name = song.artist_name
album_name = song.album_name
album_type = song.album_type
album_year = song.album_year
song_name = song.song_name

Access data

Once you have an object instance, you can retrieve data:

From an Artist
artist = wiki.search_artist('london grammar')
albums = artist.get_albums()
songs = artist.get_songs()

From an Album
album = wiki.search_album('london grammar', 'if you wait')
songs = album.get_songs()

Note:

If you want to navigate through albums, songs, you may prefer using .songs() or .albums() methods,
which yields items successively and thus are more optimized as all items are not loaded at directly.

From and Artist
artist = wiki.search_artist('london grammar')
for song in artist.songs():
 lyrics = song.get_lyrics()
 print(lyrics)
 print('\n-----\n')

From children classes (Artist –> Album –> Song), you can retrieve data too:

From a Song
song = wiki.search_song('london grammar', 'strong')
album = song.get_album()
artist = song.get_artist()

From an Album
album = wiki.search_album('london grammar', 'if you wait')
artist = album.get_artist()

Save and export

You can save all classes with the .to_json() method. The 'ascii' argument will transforms all string to
ASCII format. If you don’t want it, just remove it.

From an Artist
artist = wiki.search_artist('london grammar')
artist_data = artist.to_json(encode='ascii')

From an Album
album = wiki.search_album('london grammar', 'if you wait')
album_data = album.to_json(encode='ascii')

From a Song (contains lyrics)
song = wiki.search_song('london grammar', 'strong')
song_data = song.to_json(encode='ascii')

lyricsfandom

lyricsfandom.api

API and other classes to connect on Lyrics Wiki.

	
class lyricsfandom.api.LyricWiki(verbose=False, sleep=0, user=None)

	Main API for Lyric Wiki scrapping.

It basically wraps Artist, Album and Song classes.

	
search_album(artist_name, album_name)

	Search an album from Lyric Wiki server.

	Parameters

	
	artist_name (string) – name of the artist who made the album.

	album_name (string) – name of the album.

	Returns

	Album

	
search_artist(artist_name, cover=False, other=False)

	Search an artist from Lyric Wiki server.

	Parameters

	
	artist_name (string) – name of the artist to get.

	cover (bool) – if True scrape featuring or covers songs.

	other (bool) – if True scrape remixes or compilation albums.

	Returns

	Artist

	
search_song(artist_name, song_name)

	Search a song from Lyric Wiki server.

	Parameters

	
	artist_name (string) – name of the artist who made the song.

	song_name (string) – name of the song.

	Returns

	Song

	
set_sleep(sleep)

	Time before connecting again to a new page.

	Parameters

	sleep (float) – seconds to wait.

	
set_user(user)

	Change the user agent used to connect on internet.

	Parameters

	user (string) – user agent to use with urllib.request.

	
set_verbose(verbose)

	Change the log / display while surfing on internet.

	Parameters

	verbose (bool) – if True will display a log message each time it is connected to a page.

lyricsfandom.meta

Base classes. They are optional and can be removed for simplicity.
However, they provides a better API and sperates Artist / Album / Song in a better way.

	
class lyricsfandom.meta.AlbumMeta(artist_name, album_name, album_year=None, album_type=None)

	Defines an Abstract Album from https://lyrics.fandom.com/wiki/.

	album_name: album of the artist.

	album_type: type of album.

	album_year: released of the album.

	
classmethod from_artist(artist, album_name)

	Construct an Artist from an url.

	Parameters

	
	artist (Artist) – artist to extract the album from.

	album_name (string) – album name.

	
classmethod from_url(url)

	Construct an Album from an url.

	Parameters

	url (string) – url of the album page.

	
get_artist()

	Retrieve the artist class linked to the album (if it exists).
It is usually called when an album has been searched from an Artist class.
Then, using this function will point to the same Artist object.

	Returns

	Artist

	
register_artist(artist)

	Manually set the pointer to an Artist.

	Parameters

	artist (Artist) – artist related to the album.

	
to_json(encode=None)

	Retrieve the full playlist from an album; in a JSON format.

	Returns

	dict

	
unregister()

	Unlink the album to its artist.

	
class lyricsfandom.meta.ArtistMeta(artist_name)

	Defines an Abstract Artist / Band from https://lyrics.fandom.com/wiki/.

	artist_name: name of the artist.

	artist_id: id of the artist.

	base: base page of the artist.

	href: href page of the artist.

	url: url page of the artist.

	
classmethod from_url(url)

	Construct an Artist from an url.

	Parameters

	url (string) – url of the artist page.

	
get_links()

	Retrieve merchandise links from a Lyric Wiki page.
If the page (and links) exists, it will save it in a private attribute, to avoid loading again and again
the same links if the method is called multiple times.

	Returns

	dict

	
items()

	Basic Set-up to iterate through items (albums, songs…).

	Returns

	Album or Song

	
set_links(value)

	Set manually the links attribute.

	Parameters

	value (dict) – links to change.

	
to_json(encode=None)

	Retrieve the full discography from an artist; in a JSON format.

	Returns

	dict

	
class lyricsfandom.meta.LyricWikiMeta

	The LyricWikiMeta is an abstract class that all object pointing to Lyric Wiki web site should inherits.
It provide basic set-up to connect and access to Lyric Wiki website.

	
class lyricsfandom.meta.SongMeta(artist_name, song_name, album_name=None, album_year=None, album_type=None)

	Defines an Abstract Song from https://lyrics.fandom.com/.

	song_name: name of the song.

	song_id: id of the song.

	lyrics: lyrics of the song.

	
classmethod from_album(album, song_name)

	Construct a Song from an url.

	Parameters

	
	album (Album) – album to extract the song from.

	song_name (string) – song name.

	
classmethod from_artist(artist, song_name)

	Construct an Artist from an url.

	Parameters

	
	artist (Artist) – artist to extract the album from.

	song_name (string) – song name.

	
classmethod from_url(url)

	Construct a Song from an url.

	Parameters

	url (string) – url of the lyrics song page.

	
get_album()

	Get the parent album pointing to the song, if it exists.

	Returns

	Album

	
register_album(album)

	Link the song to a parent album.

	Parameters

	album (Album) – album to link to the song.

	
set_lyrics(value)

	Manually set the lyrics of the current song.

	Parameters

	value (string) – new lyrics.

	
to_json(encode=None)

	Retrieve the full information / lyrics from a song; in a JSON format.

	Returns

	dict

	
unregister()

	Unlink the song to both artist and album.

lyricsfandom.connect

A scrapper is used to connect to a website and extract data.

	
lyricsfandom.connect.connect(url)

	Connect to an URL.

	Parameters

	
	url (string) – url path

	sleep (float) – number of seconds to sleep before connection.

	verbose (bool) – print the url if True.

	Returns

	soup

lyricsfandom.scrape

Functions used to connect, extract, and display data from lyrics fandom website.

These functions are used to scrape data from HTML page connection. They are used inside Artist, Album, Song
classes.

The major part of this functions used a soup parameter, i.e. a Beautiful Soup Tag element
on a wab page (usually the whole page, not just a <div> or other HTML elements.

	
lyricsfandom.scrape.generate_album_url(artist_name, album_name, album_year)

	Generate a Lyric Wiki url from of an album page from its artist and name / year.

	Parameters

	
	artist_name (string) – name of the Artist.

	album_name (string) – name of the Album.

	album_year (string) – year of an Album.

	Returns

	string

	Examples::

	>>> artist_name = 'london grammar'
>>> album_name = 'if you wait'
>>> album_year = 2013
>>> generate_album_url(artist_name, album_name, album_year)
 https://lyrics.fandom.com/wiki/London_Grammar:If_You_Wait_(2013)

	
lyricsfandom.scrape.generate_artist_url(artist_name)

	Generate a Lyric Wiki url of an artist page from its name.

	Parameters

	artist_name (string) – name of the Artist.

	Returns

	string

	Examples::

	>>> artist_name = 'london grammar'
>>> generate_artist_url(artist_name)
 https://lyrics.fandom.com/wiki/London_Grammar

	
lyricsfandom.scrape.get_artist_info(soup)

	Get additional information about the artist / band.

	Parameters

	soup (bs4.element.Tag) – connection to a wiki artist page.

	Returns

	dict

	
lyricsfandom.scrape.get_external_links(soup)

	Retrieve the different links from a Lyric Wiki page.
The links returned can be found in the External Links page section,
and usually references to other platforms (like Last.fm, Amazon, iTunes etc.).

	Parameters

	soup (bs4.element.Tag) – connection to the Lyric Wiki page.

	Returns

	dict

	Examples::

	>>> # Import packages
>>> import bs4 # for web scrapping
>>> import urllib.request # to connect

>>> # Set Up: connect to a lyric wiki page
>>> USER = 'Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9.0.7) Gecko/2009021910 Firefox/3.0.7'
>>> HEADERS = {'User-Agent': USER}
>>> URL = 'https://lyrics.fandom.com/wiki/London_Grammar:Who_Am_I'
>>> req = urllib.request.Request(URL, headers=HEADERS)
>>> page = urllib.request.urlopen(req)
>>> soup = bs4.BeautifulSoup(page, 'lxml')

>>> # Retrieve links from the page
>>> get_external_links(soup)
 {'Amazon': ['https://www.amazon.com/exec/obidos/redirect?link_code=ur2&tag=wikia-20&camp=1789&creative=9325&path=https%3A%2F%2Fwww.amazon.com%2Fdp%2FB00J0QJ84E'],
 'Last.fm': ['https://www.last.fm/music/London+Grammar',
 'https://www.last.fm/music/London+Grammar/If+You+Wait'],
 'iTunes': ['https://itunes.apple.com/us/album/695805771'],
 'AllMusic': ['https://www.allmusic.com/album/mw0002559862'],
 'Discogs': ['http://www.discogs.com/master/595953'],
 'MusicBrainz': ['https://musicbrainz.org/release-group/dbf36a9a-df02-41c4-8fa9-5afe599960b0'],
 'Spotify': ['https://open.spotify.com/album/0YTj3vyjZmlfp16S2XGo50']}

	
lyricsfandom.scrape.get_lyrics(soup)

	Get lyrics from a Lyric Wiki song page.

	Returns

	string

	Examples::

	>>> # Import packages
>>> import bs4 # for web scrapping
>>> import urllib.request # to connect

>>> # Set Up: connect to a lyric wiki page
>>> USER = 'Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9.0.7) Gecko/2009021910 Firefox/3.0.7'
>>> HEADERS = {'User-Agent': USER}
>>> URL = 'https://lyrics.fandom.com/wiki/London_Grammar:Shyer'
>>> req = urllib.request.Request(URL, headers=HEADERS)
>>> page = urllib.request.urlopen(req)
>>> soup = bs4.BeautifulSoup(page, 'lxml')

>>> # Scrape the lyrics
>>> lyrics = get_lyrics(soup)
>>> print(lyrics)
 I'm feeling shyer and the world gets darker
 Hold yourself a little higher
 Bridge that gap just further
 And all your being
 I'd ask you to give it up
 An ancient feeling love
 So beautifully dressed up

Feeling shyer, I’m feeling shyer
I’m feeling shyer

Maybe you should call her
Deep in the night for her
And all your being
I’d ask you to give it up
I’d ask you to give it up

	
lyricsfandom.scrape.scrape_albums(soup)

	Scrape albums tags, usually from the main artist wiki page.
This function will successively yield albums.

Note

The function yield <h2> tags.

	Parameters

	soup (bs4.element.Tag) – artist page connection.

	Returns

	albums tags of an artist page.

	Return type

	yield bs4.element.Tag

	Examples::

	>>> # Import packages
>>> import bs4 # for web scrapping
>>> import urllib.request # to connect

>>> # Set Up: connect to a lyric wiki page
>>> USER = 'Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9.0.7) Gecko/2009021910 Firefox/3.0.7'
>>> HEADERS = {'User-Agent': USER}
>>> URL = 'https://lyrics.fandom.com/wiki/London_Grammar'
>>> req = urllib.request.Request(URL, headers=HEADERS)
>>> page = urllib.request.urlopen(req)
>>> soup = bs4.BeautifulSoup(page, 'lxml')

>>> # Scrape albums
>>> for album_tag in scrape_albums(soup):
... print(album_tag.text)
 Strong (2013)
 If You Wait (2013)
 Truth Is a Beautiful Thing (2017)
 Songs on Compilations and Soundtracks
 Additional information
 External links

	
lyricsfandom.scrape.scrape_songs(album_h2_tag, li_tag='ol')

	Scrape songs from an album. This function should be used to scrape on artist’s page.
The optional parameter li_tag is used to specify whether or not to scrape for released albums ('ol' tags)
or covers, singles, live etc. ('ul' tags). They can be combined using li_tag=['ol', 'ul']
to scrape among all songs.

	Parameters

	
	album_h2_tag (bs4.element.Tag) – album tag. Only songs under this tag will be yielded.

	li_tag (string or iterable) – tags names to scrape songs from.

	Returns

	yield song tags corresponding to the album tag.

	Return type

	yield bs4.element.Tag

	Examples::

	>>> # Import packages
>>> import bs4 # for web scrapping
>>> import urllib.request # to connect

>>> # Set Up: connect to a lyric wiki page
>>> USER = 'Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9.0.7) Gecko/2009021910 Firefox/3.0.7'
>>> HEADERS = {'User-Agent': USER}
>>> URL = 'https://lyrics.fandom.com/wiki/London_Grammar'
>>> req = urllib.request.Request(URL, headers=HEADERS)
>>> page = urllib.request.urlopen(req)
>>> soup = bs4.BeautifulSoup(page, 'lxml')

>>> # Scrape songs from the first album, 'Strong (2013)' EP.
>>> album_h2_tag = soup.select('h2 .mw-headline')[0].parent
>>> for song_tag in scrape_albums(album_h2_tag):
... print(song_tag.text)
 Strong
 Feelings

>>> # Scrape all songs from the artist page
>>> for album_tag in scrape_albums(soup):
>>> album_h2_tag = album_tag.parent
>>> for song_tag in scrape_songs(album_h2_tag):
>>> print(album_h2_tag.text)
>>> print(song_tag.text)
>>> print('------------')
 Strong (2013)
 Strong
 Feelings

 If You Wait (2013)
 Hey Now
 Stay Awake
 Shyer
 Wasting My Young Years
 Sights
 Strong
 etc. ...

lyricsfandom.utils

Utilities functions.

	
lyricsfandom.utils.capitalize(string_raw)

	Capitalize a string, even if it is between quotes like “, ‘.

	Parameters

	string_raw (string) – text to capitalize.

	Returns

	string

	
lyricsfandom.utils.name_to_wiki(name)

	Process artist, album and song’s name.

	Parameters

	name –

Returns:

	
lyricsfandom.utils.name_to_wiki_id(name)

	Generate a Lyric Wiki ID from a name.

	Parameters

	name (string) – name of an artist / song.

	Returns

	string

	
lyricsfandom.utils.parse_album_header(album_header)

	Split the album title in half, to retrieve its name an year.

Examples:

>>> album_title = 'His Young Heart (2011)'
>>> split_album_title(album_title)
 (His Young Heart, 2011)

	Parameters

	album_header (string) – album header / title to split

	Returns

	album name and year.

	Return type

	tuple

	
lyricsfandom.utils.parse_song_title(song_title, artist_name=None)

	Split a song title to retrieve the artist name and song name.
Additional argument can be added to better retrieve these names.

	Parameters

	
	song_title (string) – song header (or title for the <a> element)

	artist_name (string, optional) – name of the artist.

	Returns

	tuple

	
lyricsfandom.utils.process_lyrics(lyrics)

	Process lyrics.

	Parameters

	lyrics (string) – lyrics to tokenize / modify.

	Returns

	string

	
lyricsfandom.utils.serialize_dict(dict_raw)

	Serialize a dictionary in ASCII format so it can be saved as a JSON.

	Parameters

	dict_raw (dict) –

	Returns

	dict

	
lyricsfandom.utils.serialize_list(list_raw)

	Serialize a list in ASCII format, so it can be saved as a JSON.

	Parameters

	list_raw (list) –

	Returns

	list

	
lyricsfandom.utils.split_header(header)

	Split the header to get the artist name, album, and year.

Examples:

>>> album_title = 'Daughter:His Young Heart (2011)'
>>> split_album_title(album_title)
 (Daughter, His Young Heart, 2011)

	Parameters

	header (string) – album header / title to split

	Returns

	album name and year.

	Return type

	tuple

	
lyricsfandom.utils.split_song_header(song_header)

	Split the song title in half, to retrieve its artist an name.

Examples:

>>> song_header = 'Daughter:Run Lyrics'
>>> split_song_header(song_header)
 (Daughter, Run)

	Parameters

	song_header (string) – song header / title to split

	Returns

	artist name and song name.

	Return type

	tuple

lyricsfandom.music

lyricsfandom.music.artist

Defines an artist from LyricWiki server.
Extract albums and songs from https://lyrics.fandom.com/Artist_Name page.

	Examples::

	>>> # Note that names are not case sensible
>>> artist = Artist('daughter')
>>> artist
 Artist: Daughter

>>> # Get all albums (compilation, covers etc. included)
>>> artist.get_albums()
 [Daughter: EP "His Young Heart" (2011), Songs: 4,
 Daughter: EP "The Wild Youth" (2011), Songs: 4,
 Daughter: Album "If You Leave" (2013), Songs: 12,
 Daughter: Album "Not To Disappear" (2016), Songs: 11,
 Daughter: Album "Music From Before The Storm" (2017), Songs: 13,
 Daughter: "Songs On Compilations", Songs: 2,
 Daughter: Single "Other Songs", Songs: 1]

>>> # Only look for albums / singles released by the artist
>>> artist.get_albums(cover=False, other=False)
 [Daughter: EP "His Young Heart" (2011), Songs: 4,
 Daughter: EP "The Wild Youth" (2011), Songs: 4,
 Daughter: Album "If You Leave" (2013), Songs: 12,
 Daughter: Album "Not To Disappear" (2016), Songs: 11,
 Daughter: Album "Music From Before The Storm" (2017), Songs: 13,
 Daughter: Single "Other Songs", Songs: 1]

>>> # Idem for get_songs()

>>> # Look for an album / song from the artist
>>> song = artist.search_song('candles')
>>> lyrics = song.get_lyrics()
>>> print(lyrics)
 That boy, take me away, into the night
 Out of the hum of the street lights and into a forest
 I'll do whatever you say to me in the dark
 Scared I'll be torn apart by a wolf in mask of a familiar name on a birthday card

Blow out all the candles, blow out all the candles
“You’re too old to be so shy,” he says to me so I stay the night
Just a young heart confusing my mind, but we’re both in silence
Wide-eyed, both in silence
Wide-eyed, like we’re in a crime scene
etc. …

>>> # Retrieve the artist from a song / album object
>>> song.get_artist()
 Artist: Daughter

>>> # Get additional information from the artist
>>> artist.get_info()
 {'Years Active': '2010 - present',
 'Band Members': ['Elena Tonra', 'Igor Haefeli', 'Remi Aguilella'],
 'Genres': ['Indie Folk', 'Folk Rock'],
 'Record Labels': ['4AD']}

>>> # Get merchandise links
>>> artist.get_links()
 {'Amazon': ['https://www.amazon.com/exec/obidos/redirect?link_code=ur2&tag=wikia-20&camp=1789&creative=9325&path=https%3A%2F%2Fwww.amazon.com%2F-%2Fe%2FB001LHN42M'],
 'iTunes': ['https://itunes.apple.com/us/artist/469701923'],
 'AllMusic': ['https://www.allmusic.com/artist/mn0003013627'],
 'Discogs': ['http://www.discogs.com/artist/2218596'],
 'MusicBrainz': ['https://musicbrainz.org/artist/a1ced3e5-476c-4046-bd74-d428f419989b'],
 'Spotify': ['https://open.spotify.com/artist/46CitWgnWrvF9t70C2p1Me'],
 'Bandcamp': ['https://ohdaughter.bandcamp.com/']}

>>> # Convert the data to JSON
>>> data = artist.to_json(encode='ascii', nested=False)

These are the most common functions, but others can be used to modify the data.

	
class lyricsfandom.music.artist.Artist(artist_name)

	Defines an Artist / Band from https://lyrics.fandom.com/wiki/.

	artist_name: name of the artist.

	base: base page of Lyric Wiki.

	href: href link of the artist.

	url: url page of the artist.

	
add_album(album, force=None)

	Add an album to the artist.
When adding a new argument, the album artist’s name can be changed to match the parent artist,
using force=True.
If the provided album is the name of an album, it will automatically create an (empty) album and
add it to the artist.

	Parameters

	
	album (Album or string) – album (or album name) to add to the current artist.

	force (bool) – if True, change the album’s artist_name attribute to match the artist’s name.

	Examples::

	>>> artist = Artist('daughter')
>>> album = Album('daugghter', 'the wild youth')
>>> artist.add_album(album)
>>> artist.get_albums()
 [Daugghter: "The Wild Youth", Songs: 0]

>>> artist = Artist('daughter')
>>> album = Album('daugghter', 'the wild youth')
>>> artist.add_album(album, force=True)
>>> artist.get_albums()
 [Daughter: "The Wild Youth", Songs: 0]

	
albums(**kwargs)

	Iterate through all Albums made by the artist.

	Returns

	yield ALbum

	
classmethod from_url(url)

	Construct an Artist from an url.

	Parameters

	url (string) – url.

	Returns

	Artist

	Examples::

	>>> artist = Artist.from_url('https://lyrics.fandom.com/wiki/Daughter')
>>> artist
 Artist: Daughter

	
get_albums(cover=False, other=False)

	Get a list of all albums made by the artist.
Keywords arguments can be provided to scrape only from released albums, and reject covers, remix, compilation etc.

	Parameters

	
	cover (bool) – if True scrape featuring or covers songs.

	other (bool) – if True scrape remixes or compilation albums.

	Returns

	list

	
get_info()

	Retrieve additional information of an Artist (like band members, labels, genres etc.).

	Returns

	dict

	Examples::

	>>> artist = Artist('Daughter')
>>> artist.get_info()
 {'Years Active': '2010 - present',
 'Band Members': ['Elena Tonra', 'Igor Haefeli', 'Remi Aguilella'],
 'Genres': ['Indie Folk', 'Folk Rock'],
 'Record Labels': ['4AD']}

	
get_songs(cover=False, other=False)

	Get a list of all songs made by the artist.
Keywords arguments can be provided to scrape only from songs made by the artist, and reject covers etc.

	Parameters

	
	cover (bool) – if True scrape featuring or covers songs.

	other (bool) – if True scrape remixes or compilation albums.

	Returns

	list

	
items(cover=True, other=True)

	Connect to LyricWiki server and scrape albums / songs.
Keywords arguments can be provided to scrape only from released albums, and reject covers, remix, compilation etc.

	Parameters

	
	cover (bool) – if True scrape featuring or covers songs.

	other (bool) – if True scrape remixes or compilation albums.

	Returns

	yield Album

	
search_album(album_name)

	Search an album from an artist’s discography.

	Parameters

	album_name (string) – name of the album to look for.

	Returns

	Album

	
search_song(song_name)

	Search a song from an artist’s playlist.

	Parameters

	song_name (string) – name of the song to look for

	Returns

	Song

	
songs(**kwargs)

	Iterate through all songs made by the artist.

	Returns

	yield Song

	
to_json(encode=None)

	Get the discography of an artist.

	Returns

	list

lyricsfandom.music.album

Extract lyrics and songs from https://lyrics.fandom.com/ website.

Examples

1. Generate an album from scratch
album = Album('Bon Iver', 'For Emma, Forever Ago')
Scrape songs.
songs = album.get_songs()
Be careful as this album was created from scratch it is not linked to any ``Artist`` instance.
However, there is still the artist's name saved.
album.get_artist() # None
album.artist_name # 'Bon Iver'

2. Use an album from an artist
artist = Artist('Bon Iver')
album = Album.from_artist(artist, 'For Emmma, Forever Ago')
album.get_artist() # Artist: 'Bon Iver'
Or search it from the artist class.
album = artist.search_album('For Emma, Forever Ago')

	
class lyricsfandom.music.album.Album(artist_name, album_name, album_type=None, album_year=None)

	Defines an Album from https://lyrics.fandom.com/wiki/.

	album_name: album of the artist.

	album_type: type of album.

	album_year: released of the album.

	songs: songs of the album.

	
add_song(song, force=None)

	Add a song to the album.
When adding, the song artist’s name / album names can be changed to match the parent album,
using force=True.
If the provided song is the name of a song (a string), it will automatically create an (empty) song and
add it to the album.

	Parameters

	
	song (Song or string) – song (or song name) to add to the current album.

	force (bool) – if True, change the song’s artist_name, album_name, album_year, album_type
attribute to match its parent.

	Examples::

	>>> album = Album('daughter', 'the wild youth')
>>> song = Song('daughter', 'youth')
>>> album.add_song(song)
>>> artist.get_albums()
>>> album
 Daughter: "The Wild Youth", Songs: 5

	
classmethod from_artist(artist, album_name)

	Construct an Album from an Artist.

	Parameters

	
	artist (Artist) – Artist to extract the album from.

	album_name (string) – name of the album.

	Returns

	Album

	
classmethod from_url(url)

	Construct an Album from an url.

	Parameters

	url (string) – url.

	Returns

	Album

	Examples::

	>>> album = Album.from_url('https://lyrics.fandom.com/wiki/Daughter:His_Young_Heart_(2011)')
>>> album

	
get_songs()

	Get a list of all songs made from an album.

	Returns

	list

	
items()

	Connect to LyricWiki server and scrape songs.

	Returns

	yield Song

	
search_song(song_name)

	Search a song from an album’s playlist.

	Parameters

	song_name (string) – name of the song to look for

	Returns

	Song

	
set_album_type()

	Shortcut to retrieve the type (Single, EP, Album) from an album’s playlist.

	
songs()

	Iterate through all songs within the current album.

	Returns

	yield Song

	
to_json(encode='ascii')

	Encode a song in a JSON format, with full description.

	Parameters

	encode (string) – format style. Recommended: ASCII.

	Returns

	dict

lyricsfandom.music.song

Extract lyrics and songs from https://lyrics.fandom.com/ website.

	
class lyricsfandom.music.song.Song(artist_name, song_name, album_name=None, album_type=None, album_year=None)

	Defines a Song from https://lyrics.fandom.com/.

	song_name: name of the song.

	url: url of the song.

	
classmethod from_album(album, song_name)

	Construct a Song from an Album.

	Parameters

	
	album (Album) – album to extract the song from.

	song_name (string) – name of the song.

	Returns

	Song

	
classmethod from_artist(artist, song_name)

	Construct a Song from an artist.

	Parameters

	
	artist (Artist) – artist to extract the song from.

	song_name (string) – name of the song.

	Returns

	Song

	
classmethod from_url(url)

	Construct a Song from an url.

	Parameters

	url (string) – url of the lyrics song page.

	
get_lyrics()

	Get lyrics from an URL address.

	Returns

	string

	
items()

	Iterate through items (usually it’s empty).

	Returns

	None

	
to_json(encode='ascii')

	Encode a song in a JSON format, with full description.

	Parameters

	encode (string) – format style. Recommended: ASCII.

	Returns

	dict

 Python Module Index

 l

 		 	

 		
 l	

 	[image: -]
 	
 lyricsfandom	

 	
 	
 lyricsfandom.api	

 	
 	
 lyricsfandom.connect	

 	
 	
 lyricsfandom.meta	

 	
 	
 lyricsfandom.music.album	

 	
 	
 lyricsfandom.music.artist	

 	
 	
 lyricsfandom.music.song	

 	
 	
 lyricsfandom.scrape	

 	
 	
 lyricsfandom.utils	

Index

 A
 | C
 | F
 | G
 | I
 | L
 | N
 | P
 | R
 | S
 | T
 | U

A

 	
 	add_album() (lyricsfandom.music.artist.Artist method)

 	add_song() (lyricsfandom.music.album.Album method)

 	Album (class in lyricsfandom.music.album)

 	
 	AlbumMeta (class in lyricsfandom.meta)

 	albums() (lyricsfandom.music.artist.Artist method)

 	Artist (class in lyricsfandom.music.artist)

 	ArtistMeta (class in lyricsfandom.meta)

C

 	
 	capitalize() (in module lyricsfandom.utils)

 	
 	connect() (in module lyricsfandom.connect)

F

 	
 	from_album() (lyricsfandom.meta.SongMeta class method)

 	(lyricsfandom.music.song.Song class method)

 	from_artist() (lyricsfandom.meta.AlbumMeta class method)

 	(lyricsfandom.meta.SongMeta class method)

 	(lyricsfandom.music.album.Album class method)

 	(lyricsfandom.music.song.Song class method)

 	
 	from_url() (lyricsfandom.meta.AlbumMeta class method)

 	(lyricsfandom.meta.ArtistMeta class method)

 	(lyricsfandom.meta.SongMeta class method)

 	(lyricsfandom.music.album.Album class method)

 	(lyricsfandom.music.artist.Artist class method)

 	(lyricsfandom.music.song.Song class method)

G

 	
 	generate_album_url() (in module lyricsfandom.scrape)

 	generate_artist_url() (in module lyricsfandom.scrape)

 	get_album() (lyricsfandom.meta.SongMeta method)

 	get_albums() (lyricsfandom.music.artist.Artist method)

 	get_artist() (lyricsfandom.meta.AlbumMeta method)

 	get_artist_info() (in module lyricsfandom.scrape)

 	
 	get_external_links() (in module lyricsfandom.scrape)

 	get_info() (lyricsfandom.music.artist.Artist method)

 	get_links() (lyricsfandom.meta.ArtistMeta method)

 	get_lyrics() (in module lyricsfandom.scrape)

 	(lyricsfandom.music.song.Song method)

 	get_songs() (lyricsfandom.music.album.Album method)

 	(lyricsfandom.music.artist.Artist method)

I

 	
 	items() (lyricsfandom.meta.ArtistMeta method)

 	(lyricsfandom.music.album.Album method)

 	(lyricsfandom.music.artist.Artist method)

 	(lyricsfandom.music.song.Song method)

L

 	
 	lyricsfandom.api (module)

 	lyricsfandom.connect (module)

 	lyricsfandom.meta (module)

 	lyricsfandom.music.album (module)

 	lyricsfandom.music.artist (module)

 	
 	lyricsfandom.music.song (module)

 	lyricsfandom.scrape (module)

 	lyricsfandom.utils (module)

 	LyricWiki (class in lyricsfandom.api)

 	LyricWikiMeta (class in lyricsfandom.meta)

N

 	
 	name_to_wiki() (in module lyricsfandom.utils)

 	
 	name_to_wiki_id() (in module lyricsfandom.utils)

P

 	
 	parse_album_header() (in module lyricsfandom.utils)

 	
 	parse_song_title() (in module lyricsfandom.utils)

 	process_lyrics() (in module lyricsfandom.utils)

R

 	
 	register_album() (lyricsfandom.meta.SongMeta method)

 	
 	register_artist() (lyricsfandom.meta.AlbumMeta method)

S

 	
 	scrape_albums() (in module lyricsfandom.scrape)

 	scrape_songs() (in module lyricsfandom.scrape)

 	search_album() (lyricsfandom.api.LyricWiki method)

 	(lyricsfandom.music.artist.Artist method)

 	search_artist() (lyricsfandom.api.LyricWiki method)

 	search_song() (lyricsfandom.api.LyricWiki method)

 	(lyricsfandom.music.album.Album method)

 	(lyricsfandom.music.artist.Artist method)

 	serialize_dict() (in module lyricsfandom.utils)

 	serialize_list() (in module lyricsfandom.utils)

 	set_album_type() (lyricsfandom.music.album.Album method)

 	
 	set_links() (lyricsfandom.meta.ArtistMeta method)

 	set_lyrics() (lyricsfandom.meta.SongMeta method)

 	set_sleep() (lyricsfandom.api.LyricWiki method)

 	set_user() (lyricsfandom.api.LyricWiki method)

 	set_verbose() (lyricsfandom.api.LyricWiki method)

 	Song (class in lyricsfandom.music.song)

 	SongMeta (class in lyricsfandom.meta)

 	songs() (lyricsfandom.music.album.Album method)

 	(lyricsfandom.music.artist.Artist method)

 	split_header() (in module lyricsfandom.utils)

 	split_song_header() (in module lyricsfandom.utils)

T

 	
 	to_json() (lyricsfandom.meta.AlbumMeta method)

 	(lyricsfandom.meta.ArtistMeta method)

 	(lyricsfandom.meta.SongMeta method)

 	(lyricsfandom.music.album.Album method)

 	(lyricsfandom.music.artist.Artist method)

 	(lyricsfandom.music.song.Song method)

U

 	
 	unregister() (lyricsfandom.meta.AlbumMeta method)

 	(lyricsfandom.meta.SongMeta method)

 nav.xhtml

 Table of Contents

 		
 Welcome to lyricsfandom’s documentation!

 		
 Getting Started

 		
 Installation

 		
 Usage

 		
 Examples

 		
 LyricsFandom API

 		
 Access data

 		
 Save and export

 		
 lyricsfandom

 		
 lyricsfandom.api

 		
 lyricsfandom.meta

 		
 lyricsfandom.connect

 		
 lyricsfandom.scrape

 		
 lyricsfandom.utils

 		
 lyricsfandom.music

 		
 lyricsfandom.music.artist

 		
 lyricsfandom.music.album

 		
 lyricsfandom.music.song

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

